본문 바로가기

딥러닝

(10)
최성준님 edwith - 최신 논문으로 시작하는 딥러닝 http://www.edwith.org/deeplearningchoi/lecture/15552/ 최성준님 edwith - 최신 논문으로 시작하는 딥러닝 mlp_mnist_simple 소스중에서 실행시 ValueError: Only call `softmax_cross_entropy_with_logits` with named arguments (labels=..., logits=..., ...) 이런 에러가 생기면 아래와 같이 cost 부분을 주석처리하고, 2줄을 추가하면 된다. # LOSS AND OPTIMIZER # cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) val = tf.nn.softmax_cross_entropy_..
[정리] 모두를 위한 딥러닝 07 - 실전 연습 및 팁 by 김성훈 [정리] 모두를 위한 딥러닝 07 - 실전 연습 및 팁 by 김성훈 강의 웹사이트 : http://hunkim.github.io/ml/ Lec = 강의 / Lab = 실습 러닝 레이트 learning rate 가 너무 크면 아래 그림과 같이 예측값이 아래로 수렴하는게 아니고, 밖으로 나가버리는 경우가 생깁니다. 반대로 러닝 레이트 learning rate 가 너무 작으면 좋은 예측을 못하거나 시간이 너무 오래 걸립니다. 그리고, 2차 함수를 3차원처럼 등고선으로 나타낼 수도 있습니다. 만약 x1, x2 두 값이 입력값인데, 차이가 너무 크다면 납작한 원이 될 수 있습니다. 이렇게 되면 데이터를 함수에 넣기 전에 먼저 적절한 처리를 해야 합니다. 이렇게 넓은 범위를 포함하고 있는 입력값이 있다면 이를 적절..
[정리] 모두를 위한 딥러닝 08 - 딥러닝 개념 by 김성훈 [정리] 모두를 위한 딥러닝 08 - 딥러닝 개념 by 김성훈 강의 웹사이트 : http://hunkim.github.io/ml/Lec = 강의 / Lab = 실습 사람의 뇌를 연구해보니 작은 뉴런들이 신호를 주고 받는걸로 밝혀졌는데,이 뉴런 하나는 아주 단순한 신호를 전달하지만, 이게 합해지면서 바로 생각이라는게 만들어진다는 것이었습니다. "이를 기계에도 적용해서 학습시키면 좋은 결과가 나오지 않을까" 라는 생각에서 CNN (Convolutional Neural Networks) 이 생겨났습니다. 그리고, 리니어 리그레션만으로는 XOR 를 풀 수 없습니다. 이런 문제를 Convolutional Neural Networks (CNN) 기법으로 풀 수 있습니다. MNIST = 글자 이미지를 분석해서 어떤 ..
[정리] 모두를 위한 딥러닝 06 - Softmax Regression [정리] 모두를 위한 딥러닝 06 - Softmax Regression (Multinomial Logistic Regression) by 김성훈 강의 웹사이트 : http://hunkim.github.io/ml/Lec = 강의 / Lab = 실습 결과값이 A, B, C 중에 하나인 경우, 지금까지 알아본 내용(리니어 리그리션)으로는 불가능합니다.시그모이드 개념과 비슷하긴 하지만, 이 함수는 둘 중 하나로 수렴하기 때문에,결과가 3개 넘을때에는 이중에서 하나로 수렴할 수 있는 방법이 없습니다. A, B, C 가 나올 확률을 구해서 가장 높은거 하나만 1, 나머지는 0 으로 만들면 됩니다.A, B, C 가 나올 확률의 합은 1 이 됩니다. 입력 X, 결과 Y 모두 행렬을 이용하는데, 이 개념이 소프트맥스 s..
케라스 Keras 모델 저장, 재사용 케라스 Keras 모델 저장, 재사용 원본 : https://tykimos.github.io/2017/06/10/Model_Save_Load/ 에 있는 강좌를 정리했습니다. 위 링크는 김태영님의 케라스 강의 사이트입니다. 딥러닝 Deep Learning 케라스 Keras 에서 아래와 같은 방법으로 모델을 재사용할 수 있습니다. load_model 로 위 스크린샷처럼 모델을 저장하도록 지정하고, 처음 실행하면 처음부터 loss 로스 1.15 에서 시작. 최종 acc 정확도는 0.906 (90.6%) 90.6% 로 학습된 결과가 mnist_mlp_model.h5 라는 파일로 저장됩니다. 모델 구조 확인하기. 뭐 이건 그냥 참고용으로 보여주기에요. load_model 로 아까 저장했던 mnist_mlp_mod..
[정리] 모두를 위한 딥러닝 10 - 렐루 ReLU & 초기값 정하기 by 김성훈 [정리] 모두를 위한 딥러닝 10 - ReLU & 초기값 정하기 by 김성훈 강의 웹사이트 : http://hunkim.github.io/ml/ Lec = 강의 / Lab = 실습 시그모이드 결과값은 0
책 읽어주는 딥러닝 : DEVIEW 2017 by 김태훈 책 읽어주는 딥러닝 : DEVIEW 2017 by 김태훈 https://www.slideshare.net/carpedm20/deview-2017-80824162
[맥 MACOS] 딥러닝 개발환경 만들기 - TensorFlow + Jupyter 설치 [맥 MACOS] 딥러닝 개발환경 만들기 - TensorFlow + Jupyter 설치 윈도와 크게 별다른건 없고, 파이썬이 기본으로 설치되어 있는데, 이걸 수동으로 설치한 버전으로 맞추는 작업이 필요하다. 1. VirtualEnv 설치$ sudo pip install --upgrade virtualenv 2. VirtualEnv 환경설정, 필요 패키지 설치 우선 파이썬 3 버전으로 설치한다. $ virtualenv --system-site-packages -p python3 /Users/marasong/tensorflow 3. 텐서플로우 TensorFlow 설치pip3 install --upgrade tensorflow 아래와 같이 tensorflow-1.4 버전이 설치되었다. 4. 파이썬 3.5 설치..